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ABSTRACT 

In developing a software system, we  would  like  to estimate the total number of faults in- 

serted into a software system, the  residual fault content of that  system  at  any given time, and the 

efficacy of the testing activity  in executing the code containing the newly inserted faults. Prior 

to test, however, there may  be  very little direct  information  regarding  the number and location of 

faults. This lack of direct information  requires  the  development of a fault surrogate from which 

the number of faults and  their  location  can be estimated. We develop a fault surrogate based  on 

changes in relative complexity, a synthetic measure  which  has  been successfully used  as a fault 

surrogate in previous work.  We  show  that changes in the relative complexity can be used to es- 

timate the rates at  which faults are inserted  into a system  between successive revisions. These 

rates can be  used to continuously monitor  the total number  of faults inserted into a system. Fi- 

nally, we develop a method for determining test effectiveness based  on the measuring the pro- 

portion of testing activity devoted to exercising those areas of the system that have changed since 

the last version. 

1. INTRODUCTION 

Over a number of years of study, we can  now establish a distinct relationship between 

software faults and certain aspects of software complexity. When a software system consisting 

of  many distinct software modules is built for the  first time, we have little or  no direct informa- 

tion  as to the location of faults in the code. Some of the modules  will  have far more faults in 

them  than do others. We do, however,  now  know  that  the  number  of faults in a module is  highly 

correlated with certain software attributes that  may  be measured. This means that  we can meas- 

ure the software on these specific attributes  and have some  reasonable  notion as to the degree to 

which the modules are fault prone  [Muns90,  Muns961. 
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In the absence of information  as to the specific location of software faults, we have suc- 

cessfully used a derived metric, the  relative  complexity  measure,  as a fault surrogate. That is, if 

the relative complexity value of a module  is  large,  then it will  likely  have a large number of la- 

tent faults. If, on  the other hand,  the  relative  complexity of a module  is small, then  it  will  tend  to 

have fewer faults. As the software system evolves through a number of sequential builds, faults 

will  be identified and  the code will be  changed in an  attempt to eliminate the identified faults. 

The introduction of  new code, however,  is a fault prone  process just as  was  the initial code gen- 

eration. Faults may  well  be  injected  during this evolutionary  process. 

Code does not  always change just to fix faults that  have  been isolated in it. Some 

changes to code during its evolution  represent enhancements, design modifications or changes in 

the code in response to continually evolving requirements. These incremental code enhance- 

ments  may also result in the injection of still  more faults. Thus, as a system progresses through a 

series of builds, the relative complexity  fault surrogate of each  program  module that has  been 

altered must also change. We will  see  that the rate of change in relative complexity will serve as 

a good  index of the rate of fault  injection. 

Once the rate of fault insertion  has  been established, it becomes possible to estimate the 

number of faults remaining in the  system  at  any  point  during  the development. Since we use 

changes in relative complexity as an index of the fault insertion  rate,  it  becomes possible to esti- 

mate  number of residual faults at the module level, in which a module  is  taken to be a procedure, 

function, or method. This information  is  useful to software development  managers wishing to 

estimate the resources required to remove  the  remaining faults - not  only  can  the  number  of  re- 

maining faults be estimated, but  it  is possible to direct fault detection and removal resources at 

those portions of the software estimated  to  have  the  highest concentrations of residual faults. 

However, this is only  half  of  the picture - once the software is operating in the field, we  wish to 

estimate its reliability. The estimated number of residual faults, a static measure, must  be trans- 

formed into an estimate of the system’s dynamic  behavior. 

The general  notion of software test  is  that  rate of fault removal  will  generally exceed the 

rate of fault injection. In  most cases, this is  probably true [Muns97]. Some changes are rather 

more heroic than others. During these  more substantive change cycles, it  is quite possible that 

the actual number of faults in the  system will rise.  We  would  be  very mistaken, then, to assume 

that software test will  monotonically  reduce  the  number of faults in a system. This will  only  be 

the case when the rate of fault removal exceeds the  rate of fault injection. The rate of fault re- 
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moval  is  relatively  easy to measure. The rate of fault injection is much  more tenuous. This fault 

injection process is directly related to two  measures  that  we  can  take on code as it evolves, code 

change and code churn. 

In this investigation we  will establish a methodology  whereby code can  be  measured 

from one build to the  next, a measurement baseline. We  will  use this measurement baseline to 

develop an assessment of the rate of change to a system  as  measured by our relative complexity 

fault surrogate. From this change process we will then  be able to derive a direct measure of the 

rate of fault injection  based on changes in the software from one build to the next. We examine 

data from an  actual  system  on  which faults may  be traced to specific build increments to assess 

the predicted rate of fault injection  with  the actual. Finally, we  will develop a method of meas- 

uring  the efficiency of a test activity. 

To estimate rates of fault insertion, it  is  necessary to identify a complete software system 

on  which every version of every  module  has  been  archived together with  the faults that have 

been recorded against the system  as  it evolved. Of the  two systems we  analyzed for this study, 

the Cassini Orbiter Command  and Data Subsystem  at JPL met  all  of our objectives. On the first 

build of this system there were  approximately 96K source lines of code in approximately 750 

program modules. On the  last  build there were  approximately 1 10K lines of source code in ap- 

proximately 800 program modules. As  the  system  progressed  from  the first to the last build 

there were a total of 45,200 different  versions of these  modules. On the average, then, each 

module progressed through  an average of 60 evolutionary steps or versions. For the purposes of 

this study, the Ada  program  module  is a procedure or function. it is the smallest unit of the Ada 

language structure that  may  be measured. A number of modules  present in the first build of the 

system  were removed on subsequent builds. Similarly, a number of modules  were added. 

The Cassini CDS does not  represent  an  extraordinary software system. It is quite typical 

of the amount of change activity  that will occur in the  development of a system on the order of 

100 FLOC. It  is a non-trivial  measurement  problem to track  the  system  as it evolves. Again, 

there are two different sets of measurement activities that  must occur at once. We are interested 

the changes in  the source code and  we  are interested in the fault reports  that are being filed 

against each module. 

To determine the efficiency of a test activity, it  is  necessary to have a system in which 

structural changes between one increment and its predecessor  can be measured together with  the 

execution profile observed during test. Since we  were  unable to accomplish this last for the 
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CASSINI CDS flight software, we  studied  the  real-time software for a commercial embedded 

system. 

2. A Measurement Baseline 

The measurement of  an evolving software system  through  the shifting sands of time is 

not  an easy task. Perhaps one of the most  difficult  issues  relates to the establishment of a base- 

line against which the evolving systems may  be compared. This problem  is  very similar to that 

encountered by the surveying profession. If  we  were to buy a piece of property, there are certain 

physical attributes that  we  would like to know  about  that  property.  Among these properties is 

the topology of the site. To establish the  topological characteristics of the land, we  will have to 

seek out a benchmark. This benchmark  represents an arbitrary  point somewhere on  the subject 

property. The distance and the elevation of every  other  point  on  the  property  may  then  be estab- 

lished  in  relation to the  measurement  baseline.  Interestingly enough, we  can  pick  any point on 

the property, establish a new baseline, and  get exactly the same  topology for the property. The 

property does not change. Only our perspective changes. 

When measuring software evolution, we  need  to establish a measurement baseline for the 

same purpose described above [Niko97, Muns96aI. We  need a fixed point  against  which all oth- 

ers can be compared. Our measurement  baseline also needs to maintain  the property that, when 

another point is chosen, the exact same picture of software evolution emerges, only the perspec- 

tive changes. The individual  points  involved in measuring software evolution are individual 

builds of the system. 

Standardizing metrics for one particular build  is simple. For  each  metric obtained for 

each module, subtract from that  metric its mean  and divide by its standard deviation. This puts 

all of the metrics on the  same  relative scale, with a mean  of  zero  and a standard deviation of one. 

This works fine for comparing modules  within  one  particular  build.  But  when  we standardize 

subsequent builds using the means  and  standard deviations for those  builds a problem arises. 

The standardization masks  the change that  has  occurred  between builds. In order to place all the 

metrics  on the same relative scale and to keep  from losing the effect of changes between builds, 

all build data is standardized using the means  and  standard deviations for the metrics obtained 

from the baseline system. This preserves trends in the data and lets measurements from different 

builds be compared. 
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For each raw  metric in the  baseline  build, we  may compute a mean  and a standard devia- 

tion. Let us denote the vector of  mean values for the baseline build  as X B  and the vector of stan- 

dard deviations as sB . The standardized  baseline  metric  values for any  module j in  an arbitrary 

build i, then, may  be derived from  raw  metric  values as 

B i  wj - x j  B,i  "B 

z ; '  = n 
I si" 

The process of standardizing the  raw  metrics certain makes  them  more tractable. Among 

other things, it now permits the  comparison of metric  values  from one build to the next. This 

standardization does not solve the main  problem.  There are too many  metrics collected on each 

module over many builds. We need to reduce  the  dimensionality of the  problem. We have suc- 

cessfully used  principal components analysis for reducing  the dimensionality of  the  problem 

[Muns90a, Khos921. The principal  components technique will  reduce a set of highly correlated 

metrics to a much smaller set of uncorrelated or orthogonal  measures.  One of the products of  the 

principal components technique is  an  orthogonal  transformation  matrix T that  will send the stan- 

dardized scores (the matrix z) onto a reduced  set of domain  scores  thusly, d = zT . 

In the same manner as  the baseline means  and standard deviations were  used to transform 

the  raw metric of  any  build relative to a baseline  build,  the  transformation  matrix TB derived 

from the baseline build  will  be  used in subsequent  builds to transform standardized metric values 

obtained from that build to the  reduced  set of domain  metrics  as  follows: dB*' = zB3' T B  . where 

zB9' are the standardized metric  values  from  build i baselined on build B . 
Another artifact of the  principal components analysis is the set of eigenvalues that are 

generated for each  of  the new principal components. Associated  with  each of the new measure- 

ment domains is an eigenvalue, 2 .  These eigenvalues are large or  small  varying directly with 

the proportion of variance explained by each  principal component. We have successfully ex- 

ploited these eigenvalues to create a new  metric  called  relative complexity, p , that is the 

weighted sum of the domain  metrics to wit: 
nr 

pi = 5 0 + 1 0 ~ a , d j  

where rn is the dimensionality of the reduced  metric  set  [Muns90a]. 
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As was  the case for  the  standardized  metrics  and  the  domain  metrics,  relative  complexity 

may  be  baselined  as  well  using the eigenvalues  and  the  baselined  domain  values  as  follows: 

If the  raw  metrics  that  are  used  to  construct  the  relative  complexity  metric  are  carefully 

chosen for their relationship  to  software  faults  then  the  relative  complexity  metric  will  vary in 

exactly the same manner as the  faults  [Muns95]. The relative  complexity  metric  in  this  context 

is a fault  surrogate.  Whereas  we  cannot  measure  the  faults in a program  directly  we can measure 

the  relative  complexity of the program  modules  that  contain  the  faults.  Those  modules  having a 

large  relative  complexity  value  will  ultimately be found  to  be  those  with  the  largest  number of 

faults [Muns92]. 

3. SOFTWARE  EVOLUTION 

As a software  system  grows  and  modifications  are  made, the modules  that  comprise  the 

system are recompiled  and a new  version, or build,  is  created.  Each  build  is  constructed from a 

distinct set of  these  software  modules,  though  not  always  exactly  the  same  ones. The new  ver- 

sion  may  contain some of the  same  modules  as  the  previous  version,  some  entirely  new  modules 

and  it  may  even  omit  some  modules  that  were  present in an earlier  version. Of the modules  that 

are  common to both the old and  new  version,  some  may  have  undergone  modification  since the 

last  build. The set of modules  that  constitute  the  system  on  any one build  is  subject  to  material 

change over the life  of  the  system. 

3.1 Module Sets and Versions 

When  evaluating the change  that  occurs  to  the  system  between  any  two  builds i, andj, we 

are  interested  in  three sets of modules. The first set, M:,’, is  the  set of modules  present in both 

builds of the system. These modules  may  have  changed  since  the  earlier  version  but  were not 

removed. The second set, M : ] ,  is the  set of modules  that were in the  early  build  and  were  re- 

moved  prior  to  the  later  build. The final  set, M : ] ,  is the  set of modules  that  have  been  added  to 
. .  

the  system  since the earlier  build. 

As an example, let  build i consist of the  following  set of modules. 
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Between  build i andj  module m3 is  removed  giving 

Then  between  builds j and k two  new  modules, m7 and m, are  added  and  module m2 is deleted 

giving 

For the builds i, andj  the set 

With a suitable  baseline  in  place,  and  the  module  sets  defined  above, it is  now  possible  to 

measure software evolution  across a full spectrum of software  metrics. We can do this  first by 

comparing  average  metric  values  for  the  different  builds.  Secondly,  we  can  measure the increase 

or  decrease  in  system  complexity  as  measured by a selected  metric, code delta, or we can  meas- 

ure  the  total  amount of change  the  system  has  undergone  between  builds,  code  churn. 

We can  now see that  establishing  the  complexity of a system  across  builds in the face of 

changing modules  and  changing sets of modules  is in itself a very  complex  problem. In terms of 

the example above, the relative  complexity of the  system RB3' at  build i, the early  build,  is  given 

by 

m,.t M 

where p,"" is the relative  complexity of module m, on this  build  baselined  by  build B. 

Similarly, the relative  complexity of the  system R"" at buildj, the  later  build is given by 

The later  system  build  is  said  to  be  more  complex if RB" > RE,' . 

Regardless of which  metric  is  chosen,  the  goal is the same. We wish  to  assess  how  the system 

has  changed,  over  time,  with  respect  to  that  particular  measurement. The concept of a code delta 

provides  this  information. A code  delta  is,  as  the  name  implies,  the  difference  between  two 

builds  as  to the relative  Complexity  metric. 
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3.2 Code Churn and Code Deltas 

The change in the relative complexity in a single  module  between  two builds may  be 

measured in one of two distinct ways. First, we  may simply compute the simple difference in 

the module relative complexity between  build i and buildj. We  will  call this value the code delta 

for the module mu, or fi;,’ = p, p ,  . The absolute  value of the code delta  is a measure of 

code churn. In  the case of code churn, what  is  important  is  the absolute measure of the nature 

that code has been modified. From the standpoint of fault insertion, removing a lot of code is 

probably as catastrophic as adding a bunch. The new measure of code churn, x , for module m, 

.~ B , j  - B , i  

The total net change of the  system  is  the  sum of the code delta’s for a system between 

two  builds i andj  is  given by 

in,€ M ‘ 

With a suitable baseline in place,  and  the  module sets defined above, it is now possible to 

measure software evolution across a full spectrum of software metrics. We  can do this first by 

comparing average metric  values for the different builds. Secondly, we  can measure the increase 

or decrease in  system complexity as measured by a selected  metric, code delta, or we  can  meas- 

ure the total amount of change the  system  has  undergone  between  builds, code churn. 

A limitation of measuring code deltas is  that it doesn’t  give  an indicator as to how  much 

change the system has undergone. If, between  builds,  several software modules are removed and 

are replaced by  modules  of  roughly equivalent complexity, the code delta for the system will  be 

close to zero. The overall complexity of  the system, based on the  metric  used to compute deltas, 

will  not have changed much. However, the reliability of the  system could have been severely 

effected by the process of replacing  old  modules  with  new  ones.  What  we  need  is a measure to 

accompany code delta that indicates how  much  change  has occurred. Code churn is a measure- 

ment, calculated in a similar manner  to code delta, that  provides this information. The net code 

churn of the same system  over  the  same  builds is 
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When  several  modules  are  replaced  between  builds by modules of roughly  the same 

complexity, code delta  will  be  approximately  zero  but  code  churn  will  be  equal to the sum of the 

value of p for all  of the modules,  both  inserted  and  deleted.  Both  the code delta and code churn 

for a particular  metric  are  needed  to  assess  the  evolution of a system. 

4. OBTAINING  AVERAGE  BUILD  VALUES 

One synthetic  software  measure,  relative  complexity,  has  clearly  been  established as a successful 

surrogate  measure  of  software  faults  [Muns90a].  It  seems  only  reasonable  that  we  should use it 

as the  measure  against  which  we  compare  different  builds.  Since  relative  complexity  is a com- 

posite  measure  based  on  the  raw  measurements,  it  incorporates  the  information  represented by 

LOC, V(g), q, , q2  , and  all  the  other  raw  metrics of interest.  Relative  complexity is a single 

value  that is representative of the  complexity of the  system  which  incorporates  all of the com- 

plexity  attributes we have  measured  (e.g.  size,  control  flow,  style, data structures,  etc.). 

By  definition,  the  average  relative  complexity, p ,  of the  baseline system will be 

where N B  is  the  cardinality of the set of modules on build B, the  baseline  build.  Relative  com- 

plexity for the baseline  build  is  calculated  from  standardized  values  using  the  mean  and  standard 

deviation from the  baseline  metrics. The relative  complexities  are  then  scaled  to have a mean of 

50 and a standard  deviation of 10. For  that  reason,  the  average  relative  complexity for the base- 

line  system  will  always  be a fixed  point.  Subsequent  builds  are  standardized  using the means 

and  standard  deviations of the  metrics  gathered  from  the  baseline  system  to  allow  comparisons. 

The average  relative  complexity for subsequent  builds  is  given by 

where N k  is the  cardinality of the set of program  modules in the kfh  build  and pBTk is the base- 

Pined relative  complexity for the ith module of that  set. 

The total  relative  complexity, RQ , of a system  on  its  initial  build  is  simply  the  sum of a11 

relative complexities of each  module of the  initial  system, 
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N 

R0 = C p y .  
i=l 

The principle behind relative complexity  is  that it serves as a fault surrogate. That is, it 

will  vary  in precisely the same manner as do software faults. The fault potential of a particu- 

lar module i is directly proportional its value of the  relative complexity fault surrogate. Thus, 

To derive a preliminary estimate for the  actual  number of faults per module we  may 

make judicious use of historical data. From  previous software development projects it is possi- 

ble to develop a proportionality constant, say k, that will allow the total system relative com- 

plexity to map to a specific system fault count as follows: F 0  = kRo or Ro = k / F o  . Substituting 

for R in  the previous equation, we find that 

Thus, our best estimate for the  number of faults in module i in the  initial configuration of the 

system  is 
0 0 0  g i  =r;. F . 

After an interval of testing a number of faults will be  found  and fixes made to the code to 

remedy the faults. Let F J  be the  total  number of faults found in the total system up to and  in- 

cluding the j'" build of the software. In a particular module i there will  be J.' faults found in 

the first build that are attributable to this  module. The estimated number of faults remaining in 

module i will  then  be 
1 0 1  

gi = g i  - . f i  7 

assuming that  we Rave only fixed faults in the code and  not  added  any  new ones. 

Our ability to locate the  remaining faults in a system will relate directly to our exposure 

to these faults. If, for example, at  the j" build of a system  there are g /  remaining faults in 

module i , we can not expect to  identify any  of these faults unless some test  activity  is  allocated 

to exercising module i. 

As the code is  modified over time, faults will  be found and fixed. However, new faults 

will  be introduced into the code as a result of the change. In fact, this fault injection process is 
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directly proportional to change in the  program  modules from one  version  to  the next. As a mod- 

ule  is changed from one build  to  the  next in response to evolving requirements changes and fault 

reports, its complexity will also change. Generally, the  net effect of a change is  that complexity 

will increase. Only  rarely  will its complexity decrease. It is now  necessary to describe the 

measurement process for the  rate of change in an evolving system. 

5. SOFTWARE  EVOLUTION  AND THE FAULT  INJECTION  PROCESS 

Initially, our  best estimate for the  number of faults in module i in the  initial configuration 

of the system is 

g j  = q  F . 0 0 0  

As the ith module was tested during the  test  activity of the first build, the number of faults found 

and fixed in this process was  denoted by f,‘ . However, in the process of fixing this fault, the 

source code will change. In all  likelihood, so, too,  will  the  relative complexity of this module. 

Over a sequence of builds, the complexity of this module  may change substantially. Let, 

represent  the net change in relative complexity  to  the it* module  over  the firstj builds. Then  the 

cumulative churn in the  total  system  over thesej builds  will  be, 

where N l  is  the cardinality of the  set of  all modules  that  were  in existence over these j builds. 

The complexity of the ith module  will  have changed over this sequence of builds. Its new  value 

will be pi +A:,”. Some changes  may  increase  the  relative complexity of this module and others 

may decrease it. A much better (as will  be demonstrated) measure of the cumulative change to 

the system  will  be pi + Vy*J. The system complexity, R, will also have changed. Its new  value 

will be Ro +Ao*.’ (. 

On the initial build of  the  system  the  initial  burden of faults in a module  was proportional 

to the relative complexity of the  module. As the build cycle continues the rate of fault injection 

is  most closely associate with  the code churn. Thus, the  proportion of faults in the i‘” module 
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will have changed over  the sequence of j builds,  related to its initial relative complexity and its 

subsequent code churn. Its new  value will be 

(PO +vpq y.’ = / ; / R o  +VO*J) 

We now observe that  our estimate of the number of faults in the  system  has  now changed. 

On the j t h  build there will no longer  be Fo faults in the system. New faults will have been in- 

troduced as the code has evolved. In  all likelihood, the  initial software development process and 

subsequent evolution processes will be  materially different. This means that there will  be a dif- 

ferent proportionality constant, say k” representing  the rate of fault injection for the evolving 

system. For the total system, then, there will have  been FJ = kRo + k’Ao9j faults introduced into 

the system from the initial  build  through  the j r h  build.  Each  module  will have had 

h/ = qJFjfaults introduced in it either from  the  initial  build or on subsequent builds. Thus, our 

revised estimated of the number of faults remaining in module i on buildj will  be 

g,/ =hl  - A ’ .  
The rate of fault insertion is directly  related to the change activity  that a module will  re- 

ceive from one build to the next.  At  the  system level, we  can  see  that  the expected number of 

injected faults from buildj to buildj+l will be 

FJ“ - FJ = kRo + k’Vo*.j’’ - kRo + k’Vo” 

- - k’(VOs.1” - Vo.1) 
- - k‘VjJ+‘ 

At the module level, the rate of fault injection  will,  again,  be proportional to the level of change 

activity. Hence, the expected number of injected faults between buildj to buildj+d on module i 

will  be simply hi,’ -h i .  

The two proportionality constants k and k’ are the ultimate criterion measures of software 

development process and software maintenance  processes. Each process has an associated fault 

injection proportionality constant. If  we institute a new software development process and ob- 

serve a significant change downward in the constant k, then  the change would have been a good 

one. Very frequently, however, software processes are changed  because development fads 

change and not because a criterion measure  has  indicated  that a new process is superior to a pre- 
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vious one. We will consider that an advance in software development process has occurred if 

either k or k' has diminished for that  new process. 

6. DEFINITION OF A  FAULT 

Unfortunately there is  no particular definition of just precisely  what a software fault is. In  the 

face of this difficulty it is  rather  hard to develop meaningful associative models  between faults 

and metrics. In calibrating our  model,  we  would like to know  how to count faults in  an accurate 

and repeatable manner. In measuring the  evolution of the  system to talk  about rates of fault in- 

troduction and removal, we  measure in units to the  way  that the system changes over time. 

Changes to the system are visible  at  the  module  level,  and we attempt to measure at  that  level of 

granularity. Since the measurements of system structure are collected  at  the module level  (by 

module  we  mean procedures and functions), we  would like information  about faults at the same 

granularity. We would also like to know if there are quantities that are related to fault counts 

that  can  be used to make our calibration task easier. 

Following the second definition of fault in [IEEE83, IEEE881, we consider a fault to be a 

structural  imperfection in a software system  that may lead to the system's eventually failing. 

In other words, it is a physical  characteristic of the  system of which the type  and extent may  be 

measured using the same ideas  used to measure  the  properties of more traditional physical sys- 

tems. Faults are introduced into a system by people  making errors in  their tasks - these errors 

may  be errors of commission or errors of omission. 

In order to count faults, we needed to develop a method  of identification that  is repeat- 

able, consistent, and identifies faults at  the  same  level of granularity as our structural measure- 

ments. In analyzing the flight software for the CASSINI project  the fault data and the source 

code change data were available from two different systems. The problem reporting information 

was obtained from the JPL institutional problem  reporting  system.  For the software used  in this 

study, failures were  recorded in this system starting at  subsystem-level integration, and continu- 

ing through spacecraft integration  and  test. Failure reports  typically contain descriptions of the 

failure at varying levels of detail, as well as descriptions of what  was done to correct the fault(s) 

that caused the failure. Detailed information regarding  the underlying faults (e.g.> where were 

the code changes made in each  affected  module)  is  generally unavailable from the problem re- 

porting system. 
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The entire source code evolution could  be  obtained  directly from the Software Configu- 

ration Control System (SCCS) files for all  versions of the flight software. The way  in  which 

SCCS was used in this development  effort  makes it possible to track changes to the system at a 

module  level in that  each SCCS file stores the  baseline  version of that file (which  may contain 

one or more modules) as  well  as  the  changes  required  to  produce  each subsequent increment 

(SCCS delta) of  that file. When a module  was created, or changed in response to a failure report 

or engineering change request, the file in which  the  module  is contained was checked into SCCS 

as a new delta. This allowed us to track  changes to the system  at  the  module  level as it evolved 

over time. For approximately 10% of the failure reports, we  were able to identify  the source file 

increment  in  which the fault(s) associated with a particular failure report  were repaired. This in- 

formation was available either in  the  comments  inserted by the developer into the SCCS file as 

part of the check-in process, or  as  part of the  set of comments at the beginning of a module that 

track its development history. 

Using the information  described  above, we performed  the following steps to identify 

faults: 

For each problem  report,  search  all of the  SCCS files to identify  all  modules  and the in- 

crement(s) of  each  module for which  the software was changed in response to the  prob- 

lem report. 

For each increment of each  module  identified in step 1 ,  start  with  the assumption that all 

differences between  the  increment in which  repairs are implemented  and the previous in- 

crement are due solely to fault repair.  Note  that this is  not  necessarily a valid  assumption 

- developers may  be  making functional enhancements to the system  in the same incre- 

ment that fault repairs  are  being  made.  Careful analysis of failure reports for which there 

was sufficiently detailed descriptive information  served to separate areas of fault repair 

from other changes. However,  the  level of detail required to perform this analysis was 

not consistently available. 

0 Use a differential comparator (e.g., Unix d i f  f )  to obtain the differences between the in- 

crement(s) in which  the fault(s) were  repaired,  and the immediately preceding incre- 

ment(s). The results indicated  the areas to be  searched for faults. 

After completing the  last step, we  still  had to identify  and count the faults - the results of 

the differential comparison cannot simply be counted  up to give a total  number  of faults. In or- 
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der to do this, we developed a taxonomy for identifying  and counting faults [Niko98]. This tax- 

onomy differs from others in  that  it  does  not  seek  to  identify  the  root cause of the fault. Rather, 

it is based on the  types of changes made  to  the software to repair  the faults associated with fail- 

ure reports - in other  words, it constitutes an operational  definition of a fault. Although identi- 

fying the  root causes of faults is  important in improving  the development process [Chi192, 

IEEE931, it is first necessary to identify  the faults. We do not claim that this is the only  way to 

identify  and count faults, nor do we  claim  that this taxonomy  is complete. However, we found 

that this taxonomy allowed us to successfully  identify faults in the software used  in the study in a 

consistent manner at the appropriate level  of granularity. 

7. THE  RELATIONSHIP  BETWEEN  FAULTS  AND  CODE  CHANGES 

Having established a theoretical relationship between software faults and code changes, it is 

now  of interest to validate this model empirically. This measurement occurred on  two simulta- 

neous fronts. First, all of the versions of  all  of the  source code modules  were measured. From 

these measurements, code churn  and code deltas were  obtained for every version of every mod- 

ule. The failure reports  were  sampled to lead to specific faults in the code. These faults were 

classified according to the above taxonomy  manually  on a case by case basis. Then  we  were 

able to build a regression  model  relating  the code measures to the code faults. 

The Ada source code modules for all  versions of each of these modules  were systemati- 

cally reconstructed from the SCCS code deltas. Each  of these module versions was  then  meas- 

ured  by the UX-Metric analysis tool for Ada  [SETL93].  Not  all  metrics  provided  by this tool 

were  used in this study. Only a subset of these actually  provide distinct sources of variation 

[Khos90]. The specific metrics  used in this  study are shown in Table 1. 

To establish a baseline system, all  of  the  metric  data for the  module versions that  were 

members of the first build of CDS  were  then  analyzed by our PCA-RCM tool. This tool is de- 

signed to compute relative complexity  values either from a baseline  system or from a system 

being compared to the baseline system. In that  the first build of the Cassini CDS  system  was 

selected to be the baseline system, the  PCA-RCM  tool  performed a principal components analy- 

sis on these data with an orthogonal  varimax  rotation. The objective of this phase of the analysis 

is to use the principal components technique to reduce  the  dimensionality  of  the  metric set. As 

may  been  seen in Table 2,  there are four principal components for the 18 metrics shown in Table 
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1 .  For convenience, we have chosen to name these principal components as Size, Structure, 

Style and Nesting. From the last  row  in Table 2 we  can see that  the  new  reduced set of orthogo- 

nal components of the original 18 metrics  account for approximately 85% of the  variation in the 

original metric set. 

Metrics Definition 

7 7 1  

777 

Count of unique operators [Ha1771 

N2 Count of total  operands 

Count of total operators N ,  

Count of unique operands 

P/R Purity ratio:  ratio of Halstead’s to total  program  vocabulary 
McCabe’s cyclomatic complexity 

Depth Maximum nesting  level of program  blocks 

AveDeptk Average  nesting ‘level of program  blocks 
LOC Number of lines of code 

I 
Blk / Number of blank lines 
Cmt 

LSS 
Count of executable statements Stmts 
Total  words  used in all  comments CmtWds 
Count of comments 

Number of logical source statements 
I - 

PSS I Number of physical  source  statements 

Table 1. Software  Metric  Definitions 

As is typical in the  principal components analysis of metric data, the Size domain domi- 

nates the analysis. It alone accounts for approximately 38% of the total variation  in the original 

metric set. Not surprisingly, this domain contains the  metrics of total statement count (Stmts), 

logical source statements (LSS), the Halstead  lexical  metric  primitives of operator and operand 

count, but  it also contains cyclomatic complexity (V(g)). In  that  we  regularly find cyclomatic 

complexity in this domain we are forced to conclude that  it  is  only a simple measure of size in 

the same manner as statement count. The Structure domain contain those metrics relating to 

the physical structure of the  program  such  as  non-executable statements (NonEx) and the pro- 

gram  block count (Blk). The Style domain contains measures of attribute that are directly under 
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a programmer’s control  such  as  variable  length (VZ) and  purity  ratio (P/R). The Nesting domain 

consist of the single metric that is a measure of the  average  depth of nesting of program modules 

(AveDepth). 

Table 2. Principal  Components of Software  Metries 

In order to transform  the  raw  metrics for each  module  version into their corresponding 

relative complexity values, the  means  and the standard deviations must  be computed. These are 

shown in Table 3. These values  will  be  used to transform  all raw metric  values for all versions 

of all modules to their baselined z score values. The last four columns of Table 3 contain the 

actual transformation matrix  that  will  map  the  metric z score values onto their orthogonal 

equivalents to obtain the orthogonal  domain  metric  values  used in the computation of relative 

complexity. Finally, the eigenvalues for the four domains are presented  in the last row  of this 

table. 
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Table 3, then contains all  of  the  essential  information  needed to obtain baselined relative 

complexity values for any  version  of  any  module  relative to the baseline build. As  an aside, it  is 

not  necessary  that  the baseline build  be  the  initial  build.  As a typical  system progresses through 

hundreds of builds in  the course of its life, it  is  well  worth reestablishing a baseline closer to the 

current system. In any event, these  baseline data are saved  by the PCA-RCM  tool for use in later 

computation of metric  values. Whenever the  tool is invoked referencing the baseline data it  will 

automatically use these data to transform  the raw metric  values  given to it. 

Domain3 I Domain4 I 

Table 3. Baseline  Transformation  Data 

In relating the  number of faults inserted in an increment to measures of a module’s 

structural change, we  had  only a small  number  of observations with  which to work. Problem re- 

ports could not  be consistently traced  back to source code, and there were numerous modules for 

which UX-Metric did not  report  measurements. The net  result  was  that of the over 100 faults 
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that  were initially identified, there  were  only 35 observations in  which a fault could be associated 

with a particular increment of a module,  and  with  that increment’s measures of code delta and 

code churn. 

For each of the 35 modules for which  there  was  viable fault data, there were three data 

points. First, we had  the  number  of  injected faults for that  module  that  were the direct result of 

changes that had occurred on that  module  between  the current version that contained the faults 

and the previous version  that  did not. Second, we  had code delta values for each of these mod- 

ules from the current to the  previous  version. Finally, we  had code churn values derived from 

the code deltas. 

Linear regression  models  were  computed for code churn  and code deltas with code faults 

as the dependent variable in both cases. Both  models  were  build  without constant terms in  that 

we surmise that if no changes were  made  to a module, then no  new faults could be introduced. 

The results of the  regression  between faults and code deltas were  not at all surprising. The 

squared multiple R for this model  was 0.001, about  as close to zero  as  you  can get. This result is 

directly attributable to the non-linearity of the data. Change comes in  two flavors. Change may 

increase the complexity of a module. Change may  decrease  the complexity of a model. Faults, 

on the other hand are not  related to the  direction of the change but to its intensity. Removing 

masses of code from a module is just as likely to introduce faults and  adding code to it. 

The regression model  between code churn  and faults is dramatically different. The re- 

gression ANOVA for this model are shown in Table 4. Whereas code deltas do not  show a lin- 

ear relationship with faults, code churn  certainly does. The actual  regression  model is given  in 

Table 5. In Table 6 the regressions statistics have  been  reported. Of particular interest is the 

Squared Multiple R term. This has a value  of 0.649. This means, roughly, that the regression 

model will account for more that  65% of the  variation in the faults of the observed modules 

based  on the values of code churn. 

Table 4. Regression  Analysis of Variance 

Table 5. Regression  Model 
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Squared Standard 
N error of multiple R Multiple R 

estimate 
35 2.296 0.649 0.806 

Table 6. Regression  Statistics 

Of course, it  may  be  the case that  both  the  amount of change and  the direction in  which 

the change occurred. The linear regression  through  the  origin  shown in Tables 7, 8, and 9 below 

illustrates this particular regression  model. 

Table 7. Regression  Analysis of Variance 

Effect 

0.002 2.849  0.07 1 0.201 Delta 
0.000 9.172 0.07 I 0.647 Churn 

P(2-Tail) t Std Error Coefficient 

Table 8. Regression  Model 

Squared Standard 
N error of multiple R Multiple R 

estimate 
35 2.087 .719 348 

Table 9. Regression  Statistics 

Tables 5 and 8 contain our estimates for the constant k relating the rate of fault insertion to the 

measured structural change, measured by code churn  and code delta. We see  that  the  model  in- 

corporating code delta as  well  as code churn  performs  significantly better than the model  incor- 

porating code churn alone, as measured by Squared Multiple R and  Mean  Sum of Squares. 

8. TESTING  OBJECTIVES 

Deterministically testing a large software system  is  virtually impossible. Trivial systems, 

on  the order of 20 or 30 modules,  often  have far too many possible execution paths for complete 

deterministic testing. This being  the case, we  must  revisit  what  we hope to accomplish by testing 

the system. Is our goal to remove all of the faults within the code? If this is our goal, how do we 

know  when  we have them all? What  is  it  worth, in terms of expense, to try to find one more 

fault? Given unlimited time  and  resources,  identification  and  removal of all faults might  be a 
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noble goal, but  real  world constraints make  this  largely  unattainable. The problem  is  that  we 

must provide an adequate level  of  reliability in light of the fact that we cannot find and  remove 

all of the faults. Through the use of software  measurement, we hope to identify which  modules 

contain the  most faults and, based  on  execution  profiles of the system, how these potential faults 

can impact software reliability. The idea  is  that a fault  that  never executes, never causes a fail- 

ure. However, a fault that  lies  along  the  path of normal  execution  will cause frequent failures. 

The majority of the testing effort should  be  spent finding those faults that are most likely to 

cause failure. 

The first step towards  this  testing  paradigm  is  the  identification of those modules that are 

likely  to contain the  most faults. The objectives of  the software test process are not clearly speci- 

fied and sometimes not clearly understood. An implicit objective of a deterministic approach to 

testing is to design a systematic and deterministic test  procedure  that  will guarantee sufficient 

test exposure for the  random faults distributed  throughout a program. By insuring, for example, 

that  all possible paths have  been executed, then  any  potential faults on these paths  will have had 

the opportunity to  have  been expressed. 

We must, however,  come to accept  the fact that some faults will  always  be present in the 

code. We  will  not  be able to eliminate them all. The objective of the testing process should be 

to find those faults that  will  have  the  greatest  impact  on the safety/survivability of the code. Un- 

der this view  of  the software testing  process,  the  act of testing  may  be  thought  of  as conducting 

an experiment on  the  behavior of the code under  typical execution conditions. We will deter- 

mine, a priori, exactly what  we  wish  to  learn  about  the code in the  test process and conduct the 

experiment until this stopping condition  has  been  reached. 

To know the loci of probable faults in a complex software system  is  not a sufficient condi- 

tion for reliability modeling. A software system  may  be  viewed  as a set of program modules that 

are executing a set of mutually exclusive functions. If the  system executes a functionality ex- 

pressed by a subset of modules  that are fault free, it will never fail. If, on  the other hand, the 

system is executing a functionality expressed in a subset of fault laden modules, there is a very 

high probability that  it  will fail. Thus, failure probability  is  dependent  upon the input data sets 

which drive the system into regions of code  (Le., functionalities) of differing complexities (Le., 

fault proneness). 
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Each software test suite implements a subset  of functionalities. As each test is run to com- 

pletion it generates a test execution profile which  represents the results of the execution of one or 

more functions. When a program  begins  the  execution of a particular functionality we  can de- 

scribe this beginning as the start of a stochastic  process. For the system, S,  there is a call  tree 

that shows the transition of program  control  from  one  program  module to another. This transi- 

tion  can  be  modeled as a stochastic process, where we define an indexed collection of random 

variables {X, } , where  the  index t runs  through a set of non-negative integers, t = 0,1,2, e . .  repre- 

senting the epochs of the process. At  any particular  epoch the software is found to be executing 

exactly one of its M modules. The fact of the  execution  occurring  in a particular module is a 

state of the system. For a given software system,  it may  be found  in exactly one of a finite num- 

ber of mutually exclusive and exhaustive states, 1,2, M . In this  representation of the system, 

there is a stochastic process {X, } , where  the  random  variables are observed at epochs 

t = 0,1,2,  and  where  each  random  variable  may  take on any  one of the M integers, from the 

state space A = 1,2,-.-M . 

The probability  that a particular module may execute is a conditional probability. Let Y be 

a random variable defined on  the indices of the  set of elements of F. Then 

pjk’ = Pr[X, = il Y = k ]  where k = 1,2,. . . , # { F }  represents  the execution profile for a set of 

modules expressing function k exclusively. The  distribution of  the execution profile is multino- 

mial for a software system consisting of more  than  two modules. In  other words, for each func- 

tionality, f ,  , there is an execution profile  represented by the probabilities P : ~ ) ,  p:) ,   p3 , - e * ,  p ,  . ( i )  Uj 

9. TEST  EFFICIENCY 

The test process for evolving software systems takes on a different measurement  aspect 

than that of  new systems. Existing systems are continually  being  modified as a normal part of 

the software maintenance activity. Changes  will  be  introduced into this system based on the 

need for corrections, adaptations to changing requirements, and enhancements to make the sys- 

tem  perform fasterhetter. The precise effects of changes to software modules in terms of num- 

ber  of latent faults is  now  reasonably well understood.  From a statistical testing perspective, test 

effort should be focused on  those  modules  that  are  most  likely  to contain faults. Each program 
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module  that has been modified, then, should  be  tested  in  proportion the number  of anticipated 

faults that  might  have  been introduced into it. 

Each  program  module  is  usually  closely  linked to a specific functionality. That is, as  we 

exercise a particular functionality a distinct execution  profile emerges for that functionality. For 

each functionality, some modules  have a high  probability  of  being executed, while other have a 

low probability. Each  test suite will express one or more  of  these functionalities. These execu- 

tion profiles that generate from each  test  may  be characterized by the  probability distribution 

P = { p ;  I1 I i I n )  for the test. 

In the face of the evolving nature of the software system, the impact of a single test  may 

change from one build to the  next.  Each  program  module  has a relative complexity value. This 

relative complexity is a fault surrogate.  That is, the  larger  value of the relative complexity the 

greater fault potential that a module  has. If a given  module  has a large fault potential, but limited 

exposure ( small profile value)  then the functional complexity of that  module  is also small. Our 

objective during the test  phase  is to maximize our exposure to  the faults in the system. Another 

way to say this is that  we  wish to maximize  functional complexity, Cp , given by 

where p f  is  the relative complexity of  the j‘” module on the ifh system  build  and p y )  is the  test 

profile of the k‘” test suite. 

The initial phase of the efficient testing of changed code is to identify the functionalities 

that  will exercise the modules that  have changed. Each of these functionalities so designated will 

have an associated test suite designed to exercise that functionality. With  this information it is 

now possible to describe the efficiency of a test  from a mathematical/statistical perspective. A 

regression  test  is one specifically tailored  to exercise the functionalities that  will cause the 

changed modules to be executed. A regression  test will be efficient if it does a good Job of exer- 

cising changed code. It is  worth  noting,  however,  that a regression  test  that is efficient on one 

build  may  be inefficient on a subsequent build. The efficiency of a regression test, then, is  given 

by the following formula. 

u=l 
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where m represents the cardinality of { M ,  u M } as  defined earlier. In this case, z , is  simply 

the expected value for code churn  under  the profile P ( k ) .  

This concept of test efficiency permits  the  numerical evaluation of a test  on the actual 

changes that have been  made  to  the  software system. It is simply the expected value of the fault 

exposure from one release to another  under a particular test. If the  value of z is large for a given 

test  then the test will have exercised the  changed  modules. If the  set  of z 's for a given release is 

low  then it is reasonable to suppose that  the  changed  modules  have  not  been  tested in proportion 

to the number of probable faults that  were  introduced  during  the  maintenance changes. 

For practical purposes, we need to know something about  the  upper  bound  on test effi- 

ciency. That is, if we  were  to execute the  best possible test, what  then  would  be  the  value  of  test 

efficiency. A best regression  test  is one that will spend  the  majority of its time in the  modules 

that  have changed the  most  from  one  build  to  the  next. Let, 

,=I 

This is the total code churn  between  the i and j builds. To exercise each  module  in  proportion to 

the change that has occurred in the  module during its current revision, we will compute this  pro- 

portion as follows: 

This computation will  yield a new  hypothetical  profile  called  the best projiZe. That is, it all 

modules  were executed in proportion to the  amount of change that  they  had received we  would 

then theoretically have maximized  our exposure to software faults that  may have been intro- 

duced. 

Finally, we seek to develop a measure  that will relate  well to the difference between  the 

actual profile that  is generated by a test  and  the  best  profile. To this end, consider the following 

term, Ipi - 4 i 1 .  This is the absolute value  between  the  best profile and  the  actual profile. This 

value  has a maximum value of P and a minimum of 0. The minimum  value  will  be  achieved 

when  the module best  and  actual coverage are identical. A measure of the total coverage for a 

set of modules (task or program) is then, 
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This coverage value has a maximum  value of 10 when  the  best  and the actual profiles are identi- 

cal  and 0 when there is a complete mismatch of profiles. 

10. REGRESSION  TEST  RESULTS 

The following discussion documents  the  results of the  execution  of 36 instrumented tasks 

on  two sequential builds of a large embedded software system. The perspective of this discus- 

sion is strictly from the standpoint of regression testing. That is, certain  program modules have 

changed across the two sequential  builds. The degree of this change  is  measured  by code churn. 

As has  been clearly demonstrated on  the  Cassini  spacecraft project, the greater the change in a 

program module, the greater the likelihood that faults will  have  been introduced into the code by 

the change. Each of the regression tests, then,  should  attempt  to exercise these changed modules 

in  proportion to the degree of change. If a changed module  were to receive little or no activity 

during the test process, then we must  assume  that  the latent faults in the module  will  be ex- 

pressed when the software is placed into service. 

All  of  the tasks in  system  were  instrumented with our Clic 1 .O tool. This tool  would  permit 

us to count the frequency of execution of each  module in each of the instrumented tasks and thus 

obtain the execution profiles for these tasks for each of the tests. The execution profiles show 

the distribution of activity in each  module of the  instrumented tasks. For each of the modules, 

the code churn measure was computed. The code churn  values for each modules  reflected the 

degree of change of the modules  during  the  most  recent  sequence of builds. The cumulative 

churn  values for all tasks are shown in the  second  column of Table 10. A churn  value of zero 

indicates that the module in question  received  no changes during the last build sequence. A large 

churn value (>30) indicates that the module in question  received  substantial changes. 

For the subsequent analysis, two  profile  values for each  test  will  be compared. The actual 

profile is the actual execution profile for each test. The best  profile  is the best hypothetical exe- 

cution profile given  that  each  module  would  be  tested directly in proportion to its churn  value. 

That is, a module whose  churn  value  was zero would  receive little or no  activity during the  re- 

gression test process. 

From Table 10 we can seen  that  the A and B tasks  have  received  the greatest change ac- 

tivity. Associated with  each  task  entry  in this table is  the  Best Profile and  the Actual Profile for 

the  task across all tests. The last row in the table gives  the  total  values for code churn for all 
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tasks. The last two columns of this table  contain  the expected value for the code churn of the 

task  under  the  best profile and also under  the  actual profile. These columns are labeled Best 

Coverage and Actual Coverage. The total expected value for code churn under the best profile is 

13 1 I .  The total expected value for code churn under  the  actual profile is 89. The tests spent a 

disproportionate amount of time in modules  that  had  not changed during this build interval. The 

ratio of Total Actual Coverage to  Total  Best  Coverage  will  yield a percent coverage index for the 

task, for the system, or for the test  depending  on the granularity of the summary. 

E 

121.00  3.55E-02  2.79E-03  4.299957 0.337566 
0.401035 4.697273 3.17E-03  3.71E-02  126.46 F 
0.402485 6.67  1584 2.67E-03 4.43E-02 150.7 1 



-27- 

AH 0 O.OOE+OO 2.15E-04 
AI 0 O.OOE+OO 4.57E-07 
AJ 0 O.OOE+OO 2.85E-06 

I I 3404.946) I 
Table 10. Test  Summary  by ' 

0 0 
0 

.'ask 

The change coverage index  was  computed by module for each task and then for the total 

system. In Figure 1 ,  these coverage data are presented for the  total  system  and Tasks A, B, D, 

and E. For this figure, the  values  have  been  scaled onto the  interval from 0 to 10. Had there 

been  perfect  best coverage, the  total  value  would  have  been 10. The coverage values for the A 

and B tasks  were  the  best out of all tasks. The E and D tasks, while having relatively  high code 

churn values, did not fair so well. The test coverage of the D task  was  typical of the total system, 

shown  as the rightmost entry in this figure. 

Change Coverage Index 

A B E D Total 

Figure 1 - Change  Coverage  Index 

We  would  now like to look  within a task to see why the A and B tasks showed better cov- 

erage than other tasks. The difference between  the  best profile and  the  actual profile is  shown in 

Figure 2. Here, if the line is negative,  this  means tRat the  module  in  question  was exercise well 

out of proportion to the possible faults that  it contained. On the other hand if the line is positive, 

then the module in question  was not exercise in proportion  to  the faults that  it  might contain. A 

perfect line on this chart would  be  perfectly straight at  zero  on  the profile axis. 
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Table 1 1 summarizes the performance of the best  24  of suite of 1 15 instrumented tests. 

Only those tests whose performance index  exceeded 10% of a theoretical  total are shown here. 

Again the performance index  shown in this figure was  computed by forming the ratio of the  ac- 

tual profile to the  best profile for that test. It  must  be  remember  that  not  all  tests  will exercise all 

modules. The performance index  is  computed  only for those  modules  whose functionality was 

included  in  the test. From a regression  test  perspective, we  now  know  that  we have a testing 

problem. None of these tests do a really  good job in executing the code most likely to contain 

the  newly introduced faults. 

Test # Percent  Test # Percent 
Coverage Coverage 

28 
11.6 31 19.0 18 
11.7 177 20.6 

14 
11.5  167 16.9 12 
11.5 3 18.2 

47 
11.3 2 14.8 49 
11.4 59a  14.8 

156 
10.8 38 13.1 20 
10.9 1 13.2 

39 
10.6  33 12.2 9 
10.7 I80 12.9 

I 158 I 12.2 11 137 I 10.2 I 
Table 11. Individual  Test  Summaries 

10. SUMMARY 

There is a distinct and a strong relationship between software faults and measurable soft- 

ware attributes. This is in  itself  not a new  result or observation. The most interesting result of 

this current endeavor is  that  we also found a strong  association  between  the fault injection proc- 

ess over the evolutionary history of a software system  and  the degree of change that is taking 

place in each of the  program  modules.  We also found that  the direction of the change had  an ef- 

fect on the number of faults inserted. Some changes will have  the  potential of introducing very 

few faults while others may  have a serious impact on the  number of latent faults. Different num- 

bers of faults may  be inserted, depending  upon  whether code is being added to or removed from 

the system. 
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In order for the measurement  process  to  be  meaningful,  the fault data must  be  very care- 

fully collected. In this study, the data were extracted ex  post facto as a very labor intensive ef- 

fort. Since fault data cannot be  collected  with  the  same degree of automation as much of the data 

on software metrics being  gathered by development organizations, material changes in the soft- 

ware development and software maintenance  processes  must  be  made to capture these fault data. 

Among other things, a well  defined  fault  standard  and fault taxonomy  must  be developed and 

maintained  as  part  of  the software development  process. Further, all designers and coders should 

be  thoroughly  trained  in its use. A viable  standard is one  that may be  used to classify any fault 

unambiguously. A viable fault recording  process is one in which  any one person  will classify a 

fault exactly the same as  any  other  person. 

Finally, the  whole  notion of measuring  the fault injection process is  its ultimate value  as 

a measure of software process. The software engineering literature is replete with examples of 

how software process improvement  can  be  achieved  through  the  use of some  new software de- 

velopment technique. What  is  almost  absent  from  the  same literature is a controlled study to 

validate the fact that the new  process  is  meaningful.  The  techniques  developed in this study  can 

be implemented in a development organization to provide a consistent method of measuring fault 

content and structural evolution across  multiple  projects  over  time. The initial estimates of fault 

insertion  rates  can serve as a baseline against  which future projects  can  be compared to deter- 

mine  whether progress is  being made in reducing  the fault insertion rate, and to identify those 

development techniques that  seem to provide  the  greatest  reduction. 

Software test is  not  an intuitive process. Different modules are changed between  builds. A 

regression test that  was  satisfactory for one build  might  well  be  totally inadequate on a subse- 

quent build. When a program  is  subjected  to  numerous  test suites to exercise differing aspects of 

its functionality, the  test  risk of a system  will  vary  greatly  as a result of the execution of these 

different test suites. Intuitively - and  empirically - a program  that spends a high  proportion of 

its time executing a module set of high  relative  complexity  will  be  more failure prone than one 

driven to executing program  modules  with  complexity  values. Thus, we  need to identify the 

characteristics of test scenarios that cause our criterion  measures of x and7 to be Parge. 

The importance of this research  is  that we can now have a clearer understanding of  how to 

quantify and evaluate the effectiveness of the  regression  testing process. For this study, we  were 

not able to perform an analysis of test effectiveness on  the same system for which  we estimated 

the rate of fault insertion. We are currently  working  with NASA and commercial software de- 
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velopment efforts to apply  both  types of analysis  to  the  same project, with  the  goal  of improving 

our ability to estimate the number of faults remaining in the  system after the completion of a test 

sequence and allocate them  among those portions of the  system  that have changed since the last 

increment. 
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